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The Template-directed Synthesis of Porphyrin-stoppered [2]Rotaxanes 
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Two [2]rotaxanes, composed o f  ( i )  a polyether chain intercepted by (a) one centrally-located and (b )  two  
symmetrically-located n-electron-rich hydroquinol rings and terminated by  free-base and metallated (Zn) tetraaryl- 
porphyrin groups respectively and ( i i )  a tetracationic cyclophane constructed of t w o  n-electron-deficient bipyridinium 
units linked by paraphenylenedimethyl residues, have been self-assembled by  a clipping procedure. 

As our interest'-3 in templating the synthesis of [2]rotaxanes, 
employing aromatic n-n stacking interactions as the major 
source of molecular recognition, has been deveioping,4>5 there 
have been several reportsb-11 in the literature12 of [2]rotaxanes 
and polyrotaxanes, self-assembled as a result of employing 
other kinds of non-covalent and coordinative bonding interac- 
tions. Aside from illustrating the potential of self-assembly in 
synthesis,3.13,14 the mechanical properties of rotaxanes sug- 
gests them as prototypes for the construction of molecular 
devices. The concept of a molecular shuttle,lS which may be 
addressed photochemically, is an objective that currently 
appeals to us. This goal has led us to identify tetraarylporphy- 
rind6 as groups which could serve the dual purpose of stoppers 
and of photochemically-active functions in a [2]rotaxane with 
molecular switching possibilities. Here, we report on the 

self-assembly? of [2]rotaxanes ll.4PF6 and 12-4PF6 (Scheme 
11, whose dumbbell components contain one and two mole- 
cular recognition sites, respectively. In both [2]rotaxanes, 

t Spectral data for 7: m.p. 195-197°C; m/z (positive-ion FABMS) 
1897 for [M + H)+; 1H NMR: (CDC13, 300 MHz) b 8.97 (4 H, d,  J4.5 
Hz), 8.94 (4H, d, J4.5 Hz), 8.89 (2H, d,  J5.5 Hz), 8.81 (4H, d, J 5 . 5  
Hz), 8.10-8.15 (12H, m), 7.82 (4H, d, J 8.0 Hz), 7.54-7.58 (12H, m), 
6.19(4H,d,J8.0Hz),6.10(4H,s),3.22-3.26(4H,m),2.73(6H,s), 
2.69 (12H, s), 2.61-2.68 (SH, m), 2.38-2.47 (12H, m), 2.20-2.25 (4H, 
m), 2.12-2.17 (4H, m), I3C NMR: (CDC13, 75 MHz) 6 156.9, 152.3, 
150.5, 150.3, 150.0, 150.0, 140.8, 140.6, 137.0, 136.7, 135.7, 135.6, 
134.8, 134.5, 132.0, 131.6, 131.5, 127.3, 120.5, 120.4, 115.5, 114.8, 
111.6, 68.8, 68.6, 68.3, 67.9, 66.1,65.9,22.6,21.5; for 11.4PF6: m.p. 
247-249 "C; m/z (positive-ion FABMS) 2872 for [M + H] + , 2727 for 



J .  C H E M .  soc., C H E M .  COMMUN.,  1992 

Fig. 1 The degenerate shuttling process in l2.PF6 
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tetraarylporphyrin groups act as the stoppers and hydroquinol 
rings act as the molecular recognition sites. 

Reaction (K2C03, Me2C0, reflux, 24 h) of the zinc 
porphyrin 5-isolated after metallation17 of the free-base 
porphyrin 618  with Z ~ ( O A C ) ~ . ~ H ~ O  in CHCl,-MeOH-with 

[M-PF6]+, 2582 for [M-2PF6]+; 'H NMR: (CD3COCD3,400 MHz) 6 
9.39(8H,d7J7.0Hz),8.69-8.82(16H,m),8.32(8H,d,J7.0Hz),8.06 
(8H,s),8.01(12H,d,J8.0Hz),7.79(4H,d,J8.5Hz),7.51(12H,d,J 
7.5 Hz), 6.80 (4H, d, J ,  8.5 Hz), 6.05 (8H, s), 3.88-3.92 (SH, m), 3.87 
(4H, s), 3.75-3.77 (4H, m), 3.67-3.70 (4H, m), 3.64-3.66 (4H, m), 
3.50-3.53 (4H, m), 3.38-3.41 (SH, m), 2.61 (18H, s), -2.75 (4H, s), 

147.7, 146.0, 139.9, 139.8, 138.4, 137.9, 137.8, 136.2, 135.1, 132.4, 
132.0, 128.4, 128.0, 126.9, 121.4, 121.1, 121.0, 120.5, 114.1, 113.6, 
113.3, 71.7, 71.4, 71.2, 70.9, 70.5, 70.0, 68.2, 67.6, 65.8, 21.4; for 2: 
m.p. 54-55°C; mlz (positive-ion FABMS) 730 for M+; 1H NMR: 
(CDC13, 300 MHz) 6 6.83 (SH, s), 4.054.09 (SH, m), 3.81-3.84 (SH, 
m), 3.67-3.74 (28H, m), 3.59-3.62 (4H, m), 2.41 (2H, s); for 4: rn lz 
(positive-ion FABMS) 1038 for [MI+; lH NMR: (CDC13, 300 MHz) 6 
7.79 (4H, d, J8.5 Hz), 7.33 (4H, d, J 8 . 5  Hz), 6.83 (8H, s), 4.15 (4H, t, 
J 4.5 Hz), 4.04-4.09 (SH, m), 3.80-3.84 (SH, m), 3.62-3.74 (20H, m), 
3.59 (SH, m), 2.43 (6H, s); for 8: m.p. 113-115 "C; rnlz (positive-ion 
FABMS) 2167 for [M + HI+; 1H NMR: (CDC13, 300 MHz) 6 
8.84-8.91 (16H, m), 8.02-8.06 (12H, m) 7.92 (4H, d, J 8.0 Hz), 
7.48-7.52 (12H, m), 6.99 (4H, d, J 8.0 Hz), 6.52 (4H, d, J 8.5 Hz), 
6.37 (4H, d, J 8.5 Hz), 3.99-4.02 (4H, m), 3.71-3.74 (4H, m), 
3.57-3.61 (4H, m), 3.47-3.52 (4H, m), 3.35-3.41 (4H, m), 3.02-3.05 
(4H, m), 2.68 (6H, s), 2.66 (12H, s), 2.63-2.68 (SH, m), 2.37-2.42 
(4H, m), 2.32-2.35 (4H, m); 13C NMR: (CDC13, 75 MHz) 6 158.3, 
152.9, 152.7, 150.4, 150.2, 140.1, 137.0, 135.5, 135.4, 134.4, 131.8, 
127.3, 120.9, 120.6, 115.4, 112.6; for free-base of 8: m.p. 99-101 "C; 
mlz (positive-ion FABMS) 2040 for [M + HI+; 1H NMR: (CDC13, 270 
MHz) 6 8.85 (16H, s), 8.06-8.10 (16H, m), 7.53 (12H, d, J7.5 Hz), 
7.24 (4H, d, J 8.0 Hz), 6.68-6.89 (8H, m), 4.34-4.37 (4H, m), 
3.984.07 (SH, m), 3.87-3.91 (4H, m), 3.81-3.85 CSH, m), 3.73-3.78 
(SH, m), 3.61-3.66 (SH, m), 3.49-3.55 (SH, m), 2.68 (18H, s); 13C 

134.5, 127,4, 120.1, 119.8, 115.6, 112.9, 71.0, 70.8, 70.7, 70.5, 69.9, 
69.7, 68.1, 68.0, 67.7, 21.5; for 12.4PF6: m.p. 224-226"C, mlz 
(positive-ion FABMS) 2978 for [M-2PF6]+; IH NMR: (CD3SOCD3, 
400 MHz, +100"C) 6 9.24 (8H, d ,  J7.0 Hz), 8.78 (16H, s), 8.19 (SH, 
d, J7.0 Hz), 8.03-8.07 (16H, m), 7.90 (8H, s), 7.56-7.60 (12H, m), 
7.29(4H,d,J8.0Hz),5.87(8H,s),5.22(4H,d,J7.5Hz),5.15(4H7 

(40H, m), 2.68 (18H, s). 

13C NMR: (CD3COCD3, 100 MHz) b 159.3, 151.2, 151.0, 150.9, 

NMR: (CDC13, 75 MHz) 6 159.1, 153.1, 139.3, 137.3, 135.5, 135.0, 

d, J 7.5 Hz), 4.37 (4H, t ,  J4.5 Hz), 3.95 (4H, t, J 5 . 0  Hz), 3.69-3.83 

the ditosylate 2, obtained on tosylation (TsCI, Et,N, CH2C12, 
room temp., 20 h) of the diol 1,s yielded the metallated 
bisporphyrin derivative 7 as a crystalline compound (m.p. 
195-197 "C) in 47% yield. The [2]rotaxane 11.4PF6, with m.p. 
247-249 "C was self-assembled by a clipping procedures from 
7, 9-2PF6 and 10 and work-up [involving precipitation (Et20),  
washing (CH2C12), redissolving (MeOH, MeN02), coun- 
terion exchange (NH4PF6/H20) , silica gel chromatography 
(eluting with CH2C12-EtOAc, 4 :  1 and then with MeOH, 
MeN02, 2 mol dm-3 NH4C1, 4 : 4 : l ) ,  and further counterion 
exchange (NH4PF6,H20)], which resulted in demetallation of 
its two porphyrin rings by, we suspect, the ethyl acetate 
employed as an eluent component during the chromato- 
graphy. Characterisation of the [2]rotaxane 11-4PF6 was based 
upon a positive-ion FABMS,$ which revealed an [MI+ 
'fragmentation' peak for the demetallated dumbbell com- 
ponent 7 at mlz 1772, as well as peaks for [M + HI+, 
[M-PFh]+, [M-2PF6]+ and [M-3PF6]+ at m/z 2872,2727,2582 
and 2436, respectively. The 1H NMR spectra recorded in 
CD3COCD3 demonstrate substantial shielding (A6  = -2.9 
ppm) of the hydroquinol ring protons in 11.4PF6, indicating4,s 
the encirclement of the n-electron rich aromatic ring in the 
dumbbell component by the x-electron rich bipyridinium units 
present in the tetracationic bead component. 

Safe in the knowledge that the [2]rotaxane 11.4PF6 had 
been synthesised and characterised, we turned our attention 
to the making of 12.4PF6, a [2]rotaxane which is expected to 
possess molecular shuttling properties. 15 Alkylation (K2C03, 
MeCN, reflux, 48 h) of l,ll-bis(4-hydroxyphenoxy)-3,6,9- 
trioxaundecane5 with { 2- [ 2- (2-chloroe thox y) ethox y] e thoxy } 
ethanol afforded the diol 2 (m.p. 54-55°C) which was 
converted (TsCl, Et3N, CH2C12, DMAP, 4 "C, 4 d) (DMAP = 
4-dimethylaminopyridine) into its ditosylate 4. Reaction 

$ FABMS was carried out on a Kratos MS80RF mass spectrometer 
(accelerating voltage, 3 keV; resolution 1500) coupled to a DS90 data 
system. The atom gun was an adapted saddle field source (Ion Tech 
Ltd.) operated at ca. 7 keV with a tube current of ca. 2 mA. Krypton 
was used to provide a primary beam of atoms. The sample was 
dissolved in a small volume of 3-nitrobenzylalcohol, which had 
previously been coated on to a stainless steel probe tip. Spectra were 
recorded in the positive-ion mode at a scan speed of 30 s per decade. 
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(K2C03, DMF, 80"C, 48 h) (DMF = N,N'-dimethylform- 
amide) of 4 with the free-base porphyrin 6 gave (38%) a 
bisporphyrin derivative, which was subsequently metallated 
with Z ~ ( O A C ) ~ . ~ H ~ O  in CHC13-MeOH, affording 8 as a 
crystalline compound (m.p. 113-115 "C) in 67% yield. On this 
occasion, the metallated [2]rotaxane 12.4PF6 (m.p. 224- 
226°C) was isolated in 9% yield following its self-assembly 
from 8, 9.2PF6 and 10 by the same clipping procedures as 
described previously for the template-directed synthesis of 
11.4PF6, except that pure 12.4PF6 was eluted directly from a 
silica gel chromatography column using CH2C12-MeOH, 95 : 5 
as the eluent, i. e. the demetallation observed in the case of the 
crude ll.4PF6 by the ethyl acetate present in the eluent was 
avoided. A positive-ion FABMS, carried out on the supposed 
[2]rotaxane, revealed two high mass peaks, one at mlz 2978 
corresponding to the loss of two PF6- counterions from 
l2.4PF6 and the other at mlz 2167 for the dumbbell com- 
ponent 8. The 1H NMR spectrum (400 MHz) of 12.4PF6 in 
CD3COCD3 is temperature dependent. At + 20"C, the 
signals (6 3.3-4.2) for the 0-methylene protons are broad 
while those for the hydroquinol ring protons are so broad they 
cannot be detected. When the sample is cooled down to 

-30 "C, an AA'BB' system (6 6.08-6.33) can be identified for 
the free hydroquinol ring protons with the corresponding 
AA'BB' system for the bound hydroquinol protons masked 
by signals for the 0-methylene protons.§ Other expected 
signal changes, on the basis of the degenerate shuttling process 
illustrated in Fig. 1, occur, e.g. the methylene protons in the 
tetracationic bead which resonate as a singlet (6 5.90) at 
+20"C separate out into an AB system (6, 5.88, 6B 5.94) at 
-30°C while the doublet (6 9.23) for the a-protons on the 
bipyridinium rings re-emerge following extensive line- 
broadening as two doublets (6 9.22 and 9.26). An iterative 
computer line shape analysis19 of this (broad) signal at - 10 "C 
gave a rate constant of 25 s-1 for the site-exchange process. 
This corresponds to a free-energy barrier of 13.6 kcal mol-1 
(1 cal = 4.184 J) for the degenerate shuttling process in 
keeping with expectations based on an analogous system.15 

8 When a sample of 12.4PF6 is warmed up to + 100 "C in CD3SOCD3, 
an AA'BB' system emerges in the range 6 5.13-5.24 for the 
hydroquinol ring protons, which are undergoing fast site-exchange on 
the lH NMR timescale. 
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The fact that [2]rotaxanes2" with both free-base and 
metallated porphyrinsl as stoppers can be self-assembled 
augurs well for the development of molecular devices that can 
be addressed photochemically. 
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